4.2 CLASSIFYING TRIANGLES

Real World Example

The Camel-Back Truss is a style of bridge construction that uses triangles because of their rigid structure. It is just one of the uses for triangles. This lesson is a review of the basics of triangles and their classifications.

All About Triangles

Triangle - a three sided polygon
(Remember a polygon is a closed figure made
up of segments)
Sides - Segments

$$
\overline{A B}, \overline{A C}, \& \overline{B C}
$$

Vertex or vertices - the corners (the endpoints of the sides) $A, B, \& C$
Naming Triangles - use the vertices B $\triangle A B C$, or $\triangle C A B$, or BAC etc.

Classifying Triangles by Sides

Equilateral triangle
three congruent sides

Scalene triangle

Isosceles triangle two congruent sides

Classifying Triangles by Angles

Equiangular Triangle three congruent angles

Acute triangle

Right triangle has one right angle.
three acute angles

Obtuse triangle

Opposite Side and Angle

Opposite side
the side across from
a given angle.
$\overline{B C}$ is across from $\angle A$
Opposite angle
the angle across from a
given side.
$\angle B$ is across from $\overline{A C}$

For Example 1

Name all the sides of $\triangle E F H$.

$\overline{\boldsymbol{E F}}, \overline{\boldsymbol{F H}}, \& \overline{\boldsymbol{E H}}$

Name all the verticies of $\Delta G H I$.

For Example 2

Classify $\triangle F G H, \triangle A D C$, and $\triangle E F G$ as acute, obtuse, right, or equiangular in this Camel-Back Truss bridge diagram.

$\Delta F G H$ - equiangular, $\triangle A D C-$ right, $\& \Delta E F G$ - obtuse

For Example 3

Classify each triangle by its angles and sides.

Isosceles obtuse

For Example 4

$\triangle P Q R$ is an equilateral triangle. One side measures $2 x+5$ and another side measures $x+35$. Find the length of each side.

Since the sides of an equilateral triangle are all congruent we set the two sides measures equal to each other.

$$
\begin{aligned}
2 x+5 & =x+35 \\
-x & -5
\end{aligned} \begin{aligned}
& \text { Don't forget to plug } x \text { back in } \\
& -x=30
\end{aligned}
$$

The End
Thanks for watching!

