

Graph lines and write their equations in slope-intercept and point-slope form.

Classify lines as parallel, intersecting, or coinciding.

Forms of the Equation of a Line			
FORM	EXAMPLE		
The point-slope form of a line is			
$y - y_1 = m(x - x_1)$, where <i>m</i> is	y - 3 = 2(x - 4)		
the slope and (x_1, y_1) is a given	$m = 2, (x_1, y_1) = (3, 4)$		
point on the line.			
The slope-intercept form of a	$v = 3x \pm 6$		
line is $y = mx + b$, where m is	y = 3x + 0 m - 3 h - 6		
the slope and b is the y-intercept.	m = 3, b = 0		
The equation of a vertical line is	<i>x</i> = 5		
x = a, where a is the x-intercept.			
The equation of a horizontal			
line is $y = b$, where b is the	<i>y</i> = 2		
<i>y</i> -intercept.			

Holt McDougal Geometry

Remember!

A line with y-intercept b contains the point (0, b). A line with x-intercept a contains the point (a, 0).

Holt McDougal Geometry

Example 1:

Write the equation of each line in the given form.

the line with slope 6 through (3, -4) in pointslope form

$$y - y_1 = m(x - x_1)$$

Point-slope form

$$y - (-4) = 6(x - 3)$$

Substitute 6 for m, 3 for x₁, and -4 for y₁.

Example 1B: Writing Equations In Lines

Write the equation of each line in the given form.

the line through (-1, 0) and (1, 2) in slopeintercept form

$$m = \frac{2-0}{1-(-1)} = \frac{2}{2} = 1$$

$$y = mx + b$$

$$0 = 1(-1) + b$$

$$1 = b$$

$$y = x + 1$$

Find the slope.

Slope-intercept form

Substitute 1 for m, -1 for x, and 0 for y.

Write in slope-intercept form using m = 1 and b = 1.

Holt McDougal Geometry

Example 1C

Write the equation of each line in the given form.

the line through (-3, 2) and (1, 2) in pointslope form

$$m = \frac{2-2}{1-(-3)} = \frac{0}{4} = 0$$

$$y - y_1 = m(x - x_1)$$

$$y - 2 = 0(x - 1)$$

$$y - 2 = 0$$

Find the slope.

Point-slope form

Substitute 0 for m, 1 for x_1 , and 2 for y_1 .

Simplify.

Holt McDougal Geometry

I	Pairs of Lines		
	PARALLEL	INTERSECTING	COINCIDING
	LINES	LINES	LINES
	<i>y</i> = 5 <i>x</i> + 8	y = 2x - 5	y = 2x - 4
	y = 5x - 4	y = 4x + 3	y = 2x - 4
	Same <mark>slope</mark>	Different <mark>slopes</mark>	Same <mark>slope,</mark>
	different		same y-intercept
	<i>y</i> -intercept		

Holt McDougal Geometry

Example 3:

Determine whether the lines are parallel, intersect, or coincide.

$$y = 3x + 7, y = -3x - 4$$

The lines have different slopes, so they intersect.

Example 3B: Classifying Pairs of Lines

Determine whether the lines are parallel, intersect, or coincide.

$$y = -\frac{1}{3}x + 5$$
, $6y = -2x + 12$

Solve the second equation for y to find the slopeintercept form.

$$6y = -2x + 12$$
$$y = -\frac{1}{3}x + 2$$

Both lines have a slope of $-\frac{1}{3}$, and the *y*-intercepts are different. So the lines are parallel.

Holt McDougal Geometry

Example 3C: Classifying Pairs of Lines

Determine whether the lines are parallel, intersect, or coincide.

2y - 4x = 16, y - 10 = 2(x - 1)

Solve both equations for *y* to find the slope-intercept form.

$$2y - 4x = 16 \qquad y - 10 = 2(x - 1)$$

$$2y = 4x + 16 \qquad y - 10 = 2x - 2$$

$$y = 2x + 8 \qquad y = 2x + 8$$

Both lines have a slope of 2 and a *y*-intercept of 8, so they coincide.

Holt McDougal Geometry