

## **Objectives**

Find the slope of a line.

Use slopes to identify parallel and perpendicular lines.

**Holt McDougal Geometry** 



# The **slope** is a number that describes the steepness of the line.

Don't forget to watch the video on

Finding Slope

Slope Formula  $m = \frac{y_2 - y_1}{x_2 - x_1}$ 

**Holt McDougal Geometry** 

| Summary: Slope of a Line |                |            |                 |
|--------------------------|----------------|------------|-----------------|
| Positive Slope           | Negative Slope | Zero Slope | Undefined Slope |
|                          | x<br>x         | x<br>x     |                 |

#### **Remember!**

# A fraction with zero in the denominator is undefined because it is impossible to divide by zero.

**Holt McDougal Geometry** 



#### **Slope Examples:**

 Use the slope formula to determine the slope of JK through J(3, 1) and K(2, −1).

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 1}{2 - 3} = \frac{2}{1} = 2$$

Use the slope formula to determine the slope of AB through A(4, -5) and B(4, −1).

Try these on your own

3. Use the slope formula to determine the slope of *DF* through *D*(4, −1) and *B*(−3, −1).

#### **Example 2: Transportation Application**

Justin is driving to his college dormitory from home. At 4:00 p.m., he is 260 miles from home. At 7:00 p.m., he is 455 miles from home. Find and interpret the slope of the line.

Use the points (4, 260) and (7, 455) to graph the line and find the slope.

$$m = \frac{455 - 260}{7 - 4} = \frac{195}{3} = 65$$

The slope is 65, which means Justin is traveling at an average of 65 miles per hour.



#### **Slopes of Parallel and Perpendicular Lines**

#### **3-5-1** Parallel Lines Theorem

In a coordinate plane, two nonvertical lines are <u>paralle</u>l if and only if they have the <u>same slope</u>. Any two vertical lines are parallel.

#### **3-5-2** Perpendicular Lines Theorem

In a coordinate plane, two nonvertical lines are perpendicular if and only if the product of their slopes is -1. Vertical and horizontal lines are perpendicular.

Perpendicular lines have slopes that are the opposite reciprocals.

If a line has a slope of  $\frac{a}{b}$ , then the slope of a perpendicular line is  $-\frac{b}{a}$ . Ex. Slope  $1 = -\frac{4}{5}$ , Slope  $2 = \frac{5}{4}$ 

The ratios  $\frac{a}{b}$  and  $-\frac{b}{a}$  are called <u>opposite reciprocals</u>. change sign and flip fraction.

#### Example 4:

Graph each pair of lines. Use their slopes to determine whether they are parallel, perpendicular, or neither.

 $\overrightarrow{UV} \text{ and } \overrightarrow{XY} \text{ for } U(0, 2),$  V(-1, -1), X(3, 1),and Y(-3, 3)slope of  $\overrightarrow{UV} = \frac{-1-2}{-1-0} = \frac{-3}{-1} = 3$ slope of  $\overrightarrow{XY} = \frac{3-1}{-3-3} = \frac{2}{-6} = -\frac{1}{3}$ 



The products of the slopes is -1, so the lines are perpendicular.

**Holt McDougal Geometry** 

#### **Example 5**

Use slopes to determine whether the lines are parallel, perpendicular, or neither.

slope of 
$$\overrightarrow{KL} = \frac{-3-4}{-2-(-4)} = \frac{-7}{2}$$

slope of  $\overrightarrow{MN} = \frac{-1-1}{-5-3} = \frac{-2}{-8} = \frac{1}{4}$ 



The slopes are not the same and the product of the slopes is not -1, so the lines are not perpendicular.



#### **Example 6**

Graph each pair of lines. Use their slopes to determine whether they are parallel, perpendicular, or neither.

slope of 
$$\overrightarrow{CD} = \frac{1 - (-3)}{1 - (-1)} = \frac{4}{2} = 2$$

slope of  $\overrightarrow{EF} = \frac{3-1}{0-(-1)} = \frac{2}{1} = 2$ 



The lines have the same slope, so they are parallel.

Lesson Quiz: Answer the following on a google doc and submit them to show that you are done with lesson.

- **1.** Use the slope formula to determine the slope of the line that passes through M(3, 7) and N(-3, 1).
- Graph each pair of lines. Use slopes to determine whether they are parallel, perpendicular, or neither.
- **2.**  $\overrightarrow{AB}$  and  $\overrightarrow{XY}$  for A(-2, 5), B(-3, 1),X(0, -2), and Y(1, 2)
- **3.**  $\overrightarrow{MN}$  and  $\overrightarrow{ST}$  for M(0, -2), N(4, -4),S(4, 1), and T(1, -5)