3-5 Slopes of Lines

Objectives

Find the slope of a line.
Use slopes to identify parallel and perpendicular lines.

3-5 Slopes of Lines

The slope is a number that describes the steepness of the line.

Don't forget to watch the video on

Finding Slope

Slope Formula $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

3-5 Slopes of Lines

Summary: Slope of a Line

Positive Slope	Negative Slope	Zero Slope	Undefined Slope

Remember!

A fraction with zero in the denominator is undefined because it is impossible to divide by zero.

3-5 Slopes of Lines

Slope Examples:

1. Use the slope formula to determine the slope of $\overleftrightarrow{\mathbf{J} K}$ through $\boldsymbol{J}(3,1)$ and $K(2,-1)$.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-1-1-}{2-3}=\frac{2}{1}=2
$$

2. Use the slope formula to determine the slope of $\widehat{A B}$ through $A(4,-5)$ and $B(4,-1)$.

Try these on your own

3. Use the slope formula to determine the slope of $D F$ through $D(4,-1)$ and $B(-3,-1)$.

3-5 Slopes of Lines

Example 2: Transportation Application

Justin is driving to his college dormitory from home. At 4:00 p.m., he is $\mathbf{2 6 0}$ miles from home. At 7:00 p.m., he is 455 miles from home. Find and interpret the slope of the line.
Use the points $(4,260)$ and $(7,455)$ to graph the line and find the slope.

$$
m=\frac{455-260}{7-4}=\frac{195}{3}=65
$$

The slope is 65 , which means Justin is traveling at an average of 65 miles per hour.

3-5 Slopes of Lines

Slopes of Parallel and Perpendicular Lines

 3-5-1 Parallel Lines TheoremIn a coordinate plane, two nonvertical lines are parallel if and only if they have the same slope. Any two vertical lines are parallel.
3-5-2 Perpendicular Lines Theorem
In a coordinate plane, two nonvertical lines are perpendicular if and only if the product of their slopes is -1 . Vertical and horizontal lines are perpendicular.
Perpendicular lines have slopes that are the opposite reciprocals.

3-5 Slopes of Lines

If a line has a slope of $\frac{a}{b}$, then the slope of a perpendicular line is $-\frac{b}{a}$.

Ex. Slope $1=-\frac{4}{5}$, Slope $2=\frac{5}{4}$

The ratios $\frac{a}{b}$ and $-\frac{b}{a}$ are called opposite reciprocals. change sign and flip fraction.

3-5 Slopes of Lines

Example 4:

Graph each pair of lines. Use their slopes to determine whether they are parallel, perpendicular, or neither.
$\overleftarrow{U V}$ and $\overleftrightarrow{X Y}$ for $U(0,2)$, $V(-1,-1), X(3,1)$, and $Y(-3,3)$
slope of $\overrightarrow{U V}=\frac{-1-2}{-1-0}=\frac{-3}{-1}=3$
slope of $\overrightarrow{X Y}=\frac{3-1}{-3-3}=\frac{2}{-6}=-\frac{1}{3}$

The products of the slopes is -1 , so the lines are perpendicular.

3-5 Slopes of Lines

Example 5

Use slopes to determine whether the lines are parallel, perpendicular, or neither.
$K L$ and $M N$ for $K(-4,4)$,
$\overrightarrow{L(}-2,-3), M(3,1)$, and $N(-5,-1)$
slope of $\overleftrightarrow{K L}=\frac{-3-4}{-2-(-4)}=\frac{-7}{2}$
slope of $\overleftrightarrow{M N}=\frac{-1-1}{-5-3}=\frac{-2}{-8}=\frac{1}{4}$

The slopes are not the same and the product of the slopes is not -1 , so the lines are not perpendicular.

3-5 Slopes of Lines

Example 6

Graph each pair of lines. Use their slopes to determine whether they are parallel, perpendicular, or neither.
$\overleftrightarrow{C D}$ and $\overleftrightarrow{E F}$ for $C(-1,-3)$, $D(1,1), E(-1,1)$, and $F(0,3)$
slope of $\overrightarrow{C D}=\frac{1-(-3)}{1-(-1)}=\frac{4}{2}=2$
slope of $\overrightarrow{E F}=\frac{3-1}{0-(-1)}=\frac{2}{1}=2$

The lines have the same slope, so they are parallel.

(3-5) Slopes of Lines

Lesson Quiz: Answer the following on a google doc and submit them to show that you are done with lesson.

1. Use the slope formula to determine the slope of the line that passes through $M(3,7)$ and $N(-3,1)$.
Graph each pair of lines. Use slopes to determine whether they are parallel, perpendicular, or neither.
2. $\overleftrightarrow{A B}$ and $\overleftrightarrow{X Y}$ for

$$
\begin{aligned}
& A(-2,5), B(-3,1), \\
& X(0,-2), \text { and } Y(1,2)
\end{aligned}
$$

3. $\overleftrightarrow{M N}$ and $\overleftrightarrow{S T}$ for

$$
M(0,-2), N(4,-4)
$$

$$
S(4,1) \text {, and } T(1,-5)
$$

