3.4 Practice Perpendicular Lines	
Perpendicular Lines	
1. The perpendicular bisector of a segment is a line	
to a segment at the segment's	
2. The shortest segment from a point to a line is to the	e line.
For Exercises 3 and 4, name the shortest segment from the point to the here and write an inequality for <i>x</i> .	
3. A x 23 4. D x 5	
4 B C Shortest Segment	nt
Jse the figure for Exercises 5 and 6.	
5. Name the shortest segment from point <i>K</i> to \overrightarrow{LN} .	
6. Write and solve an inequality for <i>x</i> .	
Jse the figure for Exercises 7 and 8.	
7. Name the shortest segment from point Q to \overleftarrow{GH} .	
8. Write and solve an inequality for <i>x</i> .	
Fill in the blanks to complete these theorems about parallel and perpendicula	r lines.
9. If two coplanar lines are perpendicular to the same line, then the two lines are	
to each other.	
10. If two intersecting lines form a linear pair of angles	
then the lines are perpendicular.	
11. In a plane, if a transversal is perpendicular to one of two parallel lines, then it is	
to the other line.	
to the other line.	

Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor.

Nam	e	Date	Class	
Use In e of t nur	e the drawing of a basketball goal for Exe each exercise, justify the conclusion with he completed theorems from Exercises 9 nber 9, 10, or 11 in each blank to tell whi	ercises 12–14. a one 9–11. Write the ch theorem you used.		hoop pole
12.	The basketball pole intersects the court to angles that are congruent.	form a linear pair of		
	So the pole and the court must also be per	pendicular.		
13.	The hoop and the court are both perpendic	cular to the pole.		
	So the hoop and the court must be parallel	to each other.		
14.	The hoop and the court are parallel to each perpendicular to the pole.	n other. The hoop is also		
	Therefore the pole and the court must also	be perpendicular.		
For ine	Exercises 1–4, name the shortest segme	ent from the point to the	e line and	write an

Complete the two-column proof.

19. Complete the two-column proof with the correct theorem. **Given:** $\angle 1 \cong \angle 2, \ s \perp t$

Prove: $r \perp t$

Proof:

Statements	Reasons
1. ∠1 ≅ ∠2	1. Given
2. r∥s	2. If alt. int. angles are congruent then the lines are parallel.
3. $s \perp t$	3. Given
4. $r \perp t$	4

Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor.

Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor.