\qquad
\qquad
\qquad

3.4 Practice

Perpendicular Lines

1. The perpendicular bisector of a segment is a line \qquad to a segment at the segment's \qquad .
2. The shortest segment from a point to a line is \qquad to the line.

For Exercises 3 and 4, name the shortest segment from the point to the line and write an inequality for \boldsymbol{x}.
3.

4.

\qquad

Use the figure for Exercises 5 and 6.

5. Name the shortest segment from point K to $\overleftrightarrow{L N}$.
6. Write and solve an inequality for x.

Use the figure for Exercises 7 and 8.

7. Name the shortest segment from point Q to $\overrightarrow{G H}$.
8. Write and solve an inequality for x.

Fill in the blanks to complete these theorems about parallel and perpendicular lines.
9. If two coplanar lines are perpendicular to the same line, then the two lines are
\qquad to each other.
10. If two intersecting lines form a linear pair of \qquad angles, then the lines are perpendicular.
11. In a plane, if a transversal is perpendicular to one of two parallel lines, then it is
\qquad to the other line.
\qquad Date \qquad Class \qquad
Use the drawing of a basketball goal for Exercises 12-14. In each exercise, justify the conclusion with one of the completed theorems from Exercises 9-11. Write the number 9, 10, or 11 in each blank to tell which theorem you used.
12. The basketball pole intersects the court to form a linear pair of angles that are congruent.
So the pole and the court must also be perpendicular.
13. The hoop and the court are both perpendicular to the pole.

So the hoop and the court must be parallel to each other.
14. The hoop and the court are parallel to each other. The hoop is also perpendicular to the pole.
Therefore the pole and the court must also be perpendicular.

For Exercises 1-4, name the shortest segment from the point to the line and write an inequality for \boldsymbol{x}.
15.

16.

17.

18.

Complete the two-column proof.

19. Complete the two-column proof with the correct theorem.

Given: $\angle 1 \cong \angle 2, s \perp t$
Prove: $r \perp t$
Proof:

Statements	Reasons	
1. $\angle 1 \cong \angle 2$	1. Given	
2. $\mathrm{r} \\| \mathrm{s}$	2. If alt. int. angles are congruent then the lines are parallel.	
3. $s \perp t$	3. Given	
4. $r \perp t$	4.	

