Objectives

Identify reflections, rotations, and translations.

Graph transformations in the coordinate plane.

A Transformation is a change in the position, size, or shape of a figure.

The original figure is called the preimage.
The resulting figure is called the image .

A transformation maps the preimage to the image.
Arrow Notation (\rightarrow) is used to describe a transformation, and primes (') are used to label the image.

1-7 Transformations in the Coordinate Plane

A reflection is a Flip across a line called the line of reflection.

The reflected image is congruent to the original figure. Each point of the pre-image and the image are the same distance from line of reflection.

1-7 Transformations in the Coordinate Plane

A Rotation is a turn about a fixed point called the point of rotation.

All points in the image and pre-image are the same distance from the point of rotation.

1-7 Transformations in the Coordinate Plane

A translation is a slide which all the points move on the same direction the same distance.

Translations are described by a rule such as

$$
(x, y) \longrightarrow(x+a, y+b)
$$

add a to the x value for the change in position left or right and add b to the y value for the change in position up and down.

1-7 Transformations in the Coordinate Plane

Example 1

Identify the transformation. Then use arrow notation to describe the transformation.

90° rotation, $\triangle A B C \rightarrow \triangle A^{\prime} B^{\prime} C^{\prime}$

reflection, $D E F G \rightarrow D^{\prime} E^{\prime} F^{\prime} G^{\prime}$

1-7 Transformations in the Coordinate Plane

Example 2:

A figure has vertices at $A(1,-1), B(2,3)$, and $C(4,-2)$. After a transformation, the image of the figure has vertices at $A^{\prime}(-1,-1), B^{\prime}(-2,3)$, and $C^{\prime}(-4,-2)$. Draw the preimage and image. Then identify the transformation.

1-7 Transformations in the Coordinate Plane

Example 3

Find the coordinates for the image of $\triangle A B C$ after the translation $(x, y) \rightarrow(x+2, y-1)$. Draw the image.
Step 1 Find the coordinates of $\triangle A B C$.
Step 2 Apply the rule

$$
\begin{aligned}
& (x, y) \rightarrow(x+2, y-1) \\
& A(-4,2)(-4+2,2-1)=A^{\prime}(-1,5) \\
& B(-3,4)(-3+2,4-1)=B^{\prime}(1,5) \\
& C(-1,1)(-1+2,1-1)=C^{\prime}(1,0)
\end{aligned}
$$

Step 3 Plot the points.

1-7 Transformations in the Coordinate Plane

Check It Out! Example 3
Find the coordinates for the image of JKLM after the translation $(x, y) \rightarrow(x-2, y+4)$. Draw the image.
Step 1 Find the coordinates of JKLM. The vertices of $J K L M$ are $J(1,1)$, $K(3,1), L(3,-4), M(1,-4)$, .
Step 2 Apply the rule to find the vertices of the image.
$J^{\prime}(1-2,1+4)=J^{\prime}(-1,5)$
$K^{\prime}(3-2,1+4)=K^{\prime}(1,5)$
$L^{\prime}(3-2,-4+4)=L^{\prime}(1,0)$
$M^{\prime}(1-2,-4+4)=M^{\prime}(-1,0)$

Step 3 Plot the points.

1-7 Transformations in the Coordinate Plane

Example 4:
The figure shows part of a tile floor. Write a rule for the translation of hexagon 1 to hexagon 2.

Step 1 Choose two points.
Step 2 Count how many spaces you moved from A to A' in both the x and y directions.

Step 3 Convert it to coordinate notation.

$-Y$

$$
(x, y) \rightarrow\left(x-3, y+1 \frac{1}{2}\right)
$$

1-7 Transformations in the Coordinate Plane

Check It Out! Example 4

Use the diagram to write a rule for the translation of square 1 to squa

Step 1 Choose two points.
$A(3,1)$ and $A^{\prime}(-1,-3)$.
Step 2 Count spaces from A to A^{\prime}.

Step 3 Convert it to coordinate
 notation.

$$
(x, y) \rightarrow(x-4, y-4)
$$

